首页> 外文OA文献 >Retrieving the quantitative chemical information at nanoscale from scanning electron microscope energy dispersive x-ray measurements by machine learning
【2h】

Retrieving the quantitative chemical information at nanoscale from scanning electron microscope energy dispersive x-ray measurements by machine learning

机译:通过机器学习从扫描电子显微镜能量色散X射线测量中检索纳米级的定量化学信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quantitative composition of metal alloy nanowires on InSb semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning method using non-negative matrix factorization from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal, and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional transmission electron microscopy EDX measurements of the nanostructures. This shows that simple and achievable SEM EDX measurements together with machine learning non-negative matrix factorization-based blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination. Our finding can make the chemical quantification at the nanoscale much faster and cost efficient for many systems.
机译:Insb半导体表面上的金属合金纳米线和锗表面上的金纳米结构的定量组成是通过盲源分离(BSS)机器学习方法确定的,该方法使用非负矩阵分解从能量色散X射线光谱(EDX)光谱图中测得扫描电子显微镜(SEM)。 BSS方法盲目地将收集的EDX光谱图像分解为三个源分量,这些分量直接对应于来自支持的金属纳米结构,体半导体信号和碳背景的X射线信号。回收的定量组成通过详细的蒙特卡洛模拟验证,并通过纳米结构的单独横截面透射电子显微镜EDX测量得到证实。这表明简单而可实现的SEM EDX测量以及基于机器学习的非负矩阵分解的盲源分离处理可以成功地用于纳米结构定量化学成分测定。我们的发现可以使许多系统的纳米级化学定量更快,更经济。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号